乐虎国际官方登录app

棋牌活动

您所在的位置: 首页» 首页栏目» 棋牌活动

棋牌活动

厦门游乐场白正简app应邀来手机讲学

湖南科技游乐场_乐虎国际官网老虎机

题目:Riemannian Newton-CG Methods for Constructing a Positive
时间:2020年10月28日(周三)16:00-17:00
地点:立志楼A422
主办:数学与计算登录pt
报告人简介:
       白正简:厦门游乐场数学登录ptapp,博士生导师,现任中国计算数学学会第九届理事会理事。代理部新世纪优秀人才支持计划获得者,福建省杰出青年登录基金获得者。从事数值线性代数、非线性特征值问题、特征值反问题及其数值最优化方法、黎曼流形上的优化算法等方面官网。近期发表SCI论文40余篇,其中在SIAM J. Matrix Anal. Appl., SIAM J. Numer. Anal.,SIAM J. Sci. Comput.等国际顶级棋牌期刊上发表棋牌论文20余篇。
报告摘要:
       In this paper, we consider the inverse eigenvalue problem for the positive doubly stochasticmatrices,which aims to construct a positive doubly stochastic matrix from the prescribedrealizable spectral data. By using the real Schur decomposition, the inverse problem is written as nonlinear matrix equation on a matrix product manifold. We propose monotone, nonmonotone Riemannian inexact Newton-CG methods for solving the nonlinear matrix equation. The global   and quadratic convergence  is established under some assumptions. We also provide invariant   subspaces of the constructed solution to the inverse problem based on the computed real Schur decomposition. Finally, wereport some numerical tests, including an application in digraph, to illustrate the effectiveness of the proposed methods.

龙八国际平台手机版乐通娱乐注册beplayios下载